A hierarchical framework for spectro-temporal feature extraction

نویسندگان

  • Martin Heckmann
  • Xavier Domont
  • Frank Joublin
  • Christian Goerick
چکیده

In this paper we present a hierarchical framework for the extraction of spectro-temporal acoustic features. The design of the features targets higher robustness in dynamic environments. Motivated by the large gap between human and machine performance in such conditions we take inspirations from the organization of the mammalian auditory cortex in the design of our features. This includes the joint processing of spectral and temporal information, the organization in hierarchical layers, competition between coequal features, the use of high-dimensional sparse feature spaces, and the learning of the underlying receptive fields in a data-driven manner. Due to these properties we termed the features as hierarchical spectro-temporal (HIST) features. For the learning of the features at the first layer we use Independent Component Analysis (ICA). At the second layer of our feature hierarchy we apply Non-Negative Sparse Coding (NNSC) to obtain features spanning a larger frequency and time region. We investigate the contribution of the different subparts of this feature extraction process to the overall performance. This includes an analysis of the benefits of the hierarchical processing, the comparison of different feature extraction methods on the first layer, the evaluation of the feature competition, and the investigation of the influence of different receptive field sizes on the second layer. Additionally, we compare our features to MFCC and RASTA-PLP features in a continuous digit recognition task in noise. On a wideband dataset we constructed ourselves based on the Aurora-2 task, as well as on the actual Aurora-2 database. We show that a combination of the proposed HIST features and RASTA-PLP features yields significant improvements and that the proposed features carry complementary information to RASTA-PLP and MFCC features. 2010 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Phoneme Classification Using Temporal Tracking of Speech Clusters in Spectro-temporal Domain

This article presents a new feature extraction technique based on the temporal tracking of clusters in spectro-temporal features space. In the proposed method, auditory cortical outputs were clustered. The attributes of speech clusters were extracted as secondary features. However, the shape and position of speech clusters change during the time. The clusters temporally tracked and temporal tra...

متن کامل

Using spectro-temporal features to improve AFE feature extraction for ASR

Previous work has shown that spectro-temporal features reduce WER for automatic speech recognition under noisy conditions. The spectro-temporal framework, however, is not the only way to process features in order to reduce errors due to noise in the signal. The two-stage mel-warped Wiener filtering method used in the “Advanced Front End” (AFE), now a standard front end for robust recognition, i...

متن کامل

Robust Multi-Band ASR Using Deep Neural Nets and Spectro-temporal Features

Spectro-temporal feature extraction and multi-band processing were both designed to make the speech recognizers more robust. Although they have been used for a long time now, very few attempts have been made to combine them. This is why here we integrate two spectrotemporal feature extraction methods into a multi-band framework. We assess the performance of our spectro-temporal feature sets bot...

متن کامل

Spectro-temporal Gabor features as a front end for automatic speech recognition

A novel type of feature extraction is introduced to be used as a front end for automatic speech recognition (ASR). Two-dimensional Gabor filter functions are applied to a spectro-temporal representation formed by columns of primary feature vectors. The filter shape is motivated by recent findings in neurophysiology and psychoacoustics which revealed sensitivity towards complex spectro-temporal ...

متن کامل

A phoneme recognition framework based on auditory spectro-temporal receptive fields

We propose to incorporate features derived using spectrotemporal receptive fields (STRFs) of neurons in the auditory cortex for phoneme recognition. Each of these STRFs is tuned to different auditory frequencies, scales and modulation rates. We select different sets of STRFs which are specific for phonemes in different broad phonetic classes (BPC) of sounds. These STRFs are then used as spectro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Speech Communication

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2011